
A. Mickiewicz University, Pozna
Department of Mathematics and Computer Science

Marcin Borkowski, Daria Bugajewska, Dariusz Bugajewski,
Piotr Kasprzak

Selected topics of nonlinear
analysis-exercises

Pozna 2015



Chapter 1

Fixed point theorems

Exercise 1 ([10, p. 17, 1.6.3]). Let f : X → X be a mapping of an arbitrary nonempty
set X into itself. Show that if fn := f ◦ · · · ◦ f︸ ︷︷ ︸

n times

has exactly one fixed point for some n ∈ N,

then so does f .

Exercise 2 ([10, p. 17, 1.6.1]). (a) Prove that the assumption of completeness in the
Banach Contraction Principle cannot be omitted.

(b) Prove that the condition d(f(x), f(y)) ≤ αd(x, y), α < 1” in the B.C.P. cannot be
relaxed to d(f(x), f(y)) < d(x, y) for x 6= y”.

Exercise 3. Show that (b) in the previous exercise is true even in case of a bounded
space.

Exercise 4 ([10, p. 17, 1.6.1]). Show that if 〈X, d〉 is a compact metric space and
f : X → X satisfies d(f(x), f(y)) < d(x, y) for x 6= y, then f has a unique fixed point.

Exercise 5 ([10, p. 18, 1.6.8]). Let 〈X, d〉 be complete and f : X → X surjective and
expanding (that is, there exists a β > 1 such that d(f(x), f(y)) ≥ βd(x, y) for x, y ∈ X).
Show that f is bijective and has a unique fixed point z with f−n(u) := (f−1)n(u)→ z for
each u ∈ X.

Exercise 6. Show that there exists a compact metric space X, a pair of points a, b ∈ X,
a constant α ∈ (0, 1) and a fixed-point free mapping f : X → X such that: d(f(x), f(y)) ≤
αd(x, y) unless {x, y} 6= {a, b} and d(f(a), f(b)) = d(a, b).

Exercise 7 ([10, p. 25, 2.2.1]). Let K : [0, 1]× [0, 1]× R→ R be continuous and satisfy
a contraction condition in the third variable: |K(t, s, x) − K(t, s, y)| ≤ α|x − y| for all
s, t ∈ [0, 1], x, y ∈ R, where α ∈ (0, 1). Prove that for any v ∈ C[0, 1], the nonlinear
Volterra integral equation

u(t) = v(t) +

∫ t

0

K
(
t, s, u(s)

)
ds, t ∈ [0, 1], (7.1)

has a unique solution u ∈ C[0, 1]. Moreover, for any u0 ∈ C[0, 1], the sequence (un)n∈N
defined by un(t) := v(t) +

∫ t
0
K
(
t, s, un−1(s)

)
ds for n ∈ N, converges to this solution,

uniformly on [0, 1].
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Exercise 8 ([10, p. 2, 1.3.1]). Show that any contraction f : X → X, where (X, d) is a
metric space, satisfies the condition

∀ε > 0 ∃δ = δ(ε) > 0 ∀x ∈ X : d(x, f(x)) < δ =⇒ f(B(x, ε)) ⊂ B(x, ε). (8.1)

Exercise 9 ([10, p. 12, 1.3.1]). (a) Show that there exists a complete metric space X
and a mapping f : X → X satisfying (8.1), having a fixed point, but not continuous.

(b) Prove that any mapping satisfying (8.1) is continuous at any fixed point.

Exercise 10 (a classical theorem). Prove that every continuous mapping F : [0, 1]→ [0, 1]
has a fixed point.

Exercise 11. Prove that the system of equations{
|xy| − x = 0

2y2 − 1 = sin(x+ y)
(11.1)

has a solution.

Exercise 12 ([15, p. 590]). Use the Schauder fixed point theorem to prove that the closed
unit ball B in C[−1, 1] is not compact.

Exercise 13. Let X = C := [−1, 1], A := {−1, 1}, f : X → C : x 7→ −x. Show that
f ∈ KA(X,C) and that f is essential.

Exercise 14 ([10, p. 72, 4.9.34]). Let p : E → R+ be a function defined on a normed
space E such that p−1({0}) = {0} and p(λx) = λp(x) for λ > 0. Let C ⊂ E be convex,
U ⊂ C open and such that 0 ∈ U and f : Ū → C compact. Assume that for x ∈ ∂U any
of the following conditions is satisfied:

(a) p(f(x)) ≤ p(x);

(b) p(f(x)) ≤ p(f(x)− x);

(c) p(f(x)) ≤ k

√(
p(x)

)k
+
(
p(f(x)− x)

)k
for some k > 1.

Show that f has a fixed point.

Exercise 15 ([10, p. 49, 3.8.16]). Let X be a fixed-point space. Prove that every retract
of X is also a fixed point space.

Exercise 16 ([10, p. 49, 3.8.19]). Show that the closed unit ball B in l2 is not a fixed-point
space.



Chapter 2

Measures of noncompactness

Exercise 17. (a) [10, p. 55, Proof of 4.2.3] Show that if a subset A of a metric space X
is relatively compact, then for any ε > 0 there exists a finite set {c1, . . . , cn} ⊂ A
such that A ⊂

⋃n
k=1 B(ck, ε).

(b) Prove, that any nonempty subset of a complete metric space is relatively compact if
and only if it is totally bounded.

Exercise 18. Let A be a subset of a norm space and let δ(·) denote the diameter of the
corresponding set. Prove that:

(a) δ(Ā) = δ(A);

(b) δ(λA) = |λ|δ(A), where λ is an element of a given field;

(c) δ(convA) = δ(A), where convA denotes the convex hull of the set A.

Exercise 19. Let γ denote the measure of noncompactness α or β. Prove that for any
subsets A,B of a Banach space E, the properties 70, 80 and 90 hold.

Exercise 20. Prove that a metric d on a linear space V over the field R is determined by
a norm ‖·‖ if and only if that metric is invariant in view if a translation and absolutely
homogeneous.

Exercise 21. Let V be a vector space over R with a translation invariant metric d. Check
that: δ(A+B) ≤ δ(A) + δ(B) for any sets A,B ⊆ V .

Exercise 22. Let us consider R2 with the radial metric which for z1, z2 ∈ R2 is defined
by the following formula

dp(z1, z2) =

ρ(z1, z2) if θ, z1, z2 are colinear,

ρ(z1, θ) + ρ(z2, θ) otherwise,

where ρ denotes the Euclidean metric and θ = (0, 0). Check that

(a) the metric dp is absolutely homogenous;
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(b) the metric space (R2, dp) is complete;

(c) the metric dp does not come from any norm;

(d) the topology generated by the metric dp is not linear.

Exercise 23. Let us consider the metric ,,river” which for v1 = (x1, y1), v2 = (x2, y2) ∈ R2

is defined by the following formula

dr(v1, v2) =

{
|y1 − y2|, if x1 = x2,

|y1|+ |y2|+ |x1 − x2|, if x1 6= x2.

Check that

(a) the metric dr is absolutely homogeneous;

(b) the metric dr does not come from any norm;

(c) the metric space (R2, dr) is complete;

(d) the topology generated by the metric dr is not linear.

Exercise 24. Check that the topology on R2 determined by the radial metric and the
topology determined by the metric ,,river” are not comparable.

Exercise 25 ([8, p. 399, Example 1]). Let the function f : R2 → R2 be defined by the
formula f(x, y) :=

(
x+1

2
, y
)
. Prove that the function f is continuous in the metric ,,river”,

but it is not continuous in the radial metric.

Exercise 26. Let the function f : R2 → R2 be defined by the formula

f(x, y) :=
[√

2 −
√

2√
2
√

2

][
x
y

]
.

Prove that the function f is continuous in the radial metric, but it is not continuous in
the metric ,,river”.

Exercise 27. Let X be an infinite set. Prove that the Kuratowski measure of noncom-
pactness of any nonempty subset of a metric space (X, d), where d is a discrete metric,
can be expressed by the following formula

α(A) =

{
1, if A is an infinite set,

0, if A is a finite set.

Exercise 28. Check that

(a) the properties 4◦ and 8◦ of the measure α do not have to be satisfied in vector spaces
endowed with a metric which is not absolutely homogeneous;
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(b) in a vector space endowed with a metric which is not absolutely homogeneous, the
following inequality holds

hα(A) ≤ α

( ⋃
0≤λ≤h

λA

)
, h ≥ 0,

where A is any bounded subset of that space; check that even in such spaces the
inverse inequality does not have to hold;

(c) the property 6◦ is satisfied in a vector space endowed with a metric which is not
translation invariant, while it does not have to be satisfied in vector spaces endowed
with a metric which is not translation invariant;

(d) the property 7◦ does not have to be satisfied neither in vector spaces endowed with a
metric which is absolutely homogeneous nor in vector spaces endowed with a metric
which is translation invariant.

Exercise 29 ([7, p. 178, Theorem 2]). Let us consider the space R2 with the metric
,,river”. Let D be its bounded subset. Let us introduce the following notation.

- We say that a number y ∈ R satisfies the condition A∗(D), if for every ε > 0
there exists infinitely many points in D which have pairwise different abscissas and
ordinates of which belong to the interval (y − ε, y].

- We say that a number y ∈ R satisfies the condition A∗(D), if for every ε > 0
there exists infinitely many points in D which have pairwise different abscissas and
ordinates of which belong to the interval [y, y + ε).

- Let y∗(D) denotes the supremum of absolute values of numbers satisfying at least
one of the above conditions (or zero, if does not exist any such number).

(a) Prove that if does not exist a number satisfying at least one of the conditions A∗(D),
A∗(D), then the set D consists of finitely many parts such that each of those parts
is included in a vertical line, so it is compact.

(b) Prove that in the opposite case α(D) ≥ 2y∗(D).

(c) Let Ra,b, where a ∈ R, b > 0, be a rectangle [a − b, a + b] × [−b, b]. Prove that
α(Ra,b) = 2b.

(d) Prove that β(D) ≤ y∗(D).

(e) Deduce from the above items that α(D) = 2y∗(D) and β(D) = y ∗ (D).

Exercise 30 ([7, p. 179, Theorem 4]). Let us consider the space R2 with the radial metric.
Let D be its bounded subset. Let us introduce the following notation.

- We say that a number w ∈ R satisfies the condition W ∗(D), if for every ε > 0 there
exists infinitely many points v in D, satisfying the condition w − ε < ‖v‖2 ≤ w and
belonging to pairwise different lines passing through the origin.
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- We say that a number w ∈ R satisfies the condition W∗(D), if for every ε > 0 there
exist infinitely many points v in D satisfying the condition w ≤ ‖v‖2 < w + ε and
belonging to pairwise different lines passing through the origin.

- Let w∗(D) denotes the supremum of absolute values of numbers satisfying at least
one of the above conditions (or zero, if does not exist ).

(a) Prove that if does not exist a number satisfying at least one of the conditions W ∗(D),
W∗(D), then the set D consists of finitely many parts such that each of those parts
is included in a line passing through the origin, so it is compact.

(b) Prove that in the opposite case α(D) ≥ 2w∗(D).

(c) Prove that β(D) ≤ w∗(D).

(d) Deduce from the above items that α(D) = 2w∗(D) oraz β(D) = w ∗ (D).

Exercise 31. Prove the Ambrosetti Lemma for functions admitting values in a vector space
endowed with a translation invariant metric, that is, to prove that if J is a compact subset
of a metric space (X, ρ), V is a vector space endowed with a translation invariant metric
d, and H an equicontinuous and uniformly bounded family of functions h : J → V , then
α (H(J)) = maxt∈J α(H(t)), where H(J) = {h(J) : h ∈ H} and H(t) = {h(t) : h ∈ H}
for t ∈ J .

Exercise 32 ([13, p. 174, Ćwiczenie 8]). Prove the following generalization of the Cantor
theorem. Let Ft, t ∈ T , be a family of closed sets in a complete metric space, satisfying
the following conditions:

(i) the intersection of a finite number of sets Ft is nonempty;

(ii) inft∈T α(Ft) = 0.

Then
⋂
t∈T Ft 6= ∅.

Exercise 33. Give an example of a mapping which satisfies the assumptions of the
Sadovski Fixed Point Theorem but does not satisfy the assumptions of the Darbo Fixed
Point Theorem.



Chapter 3

Hyperconvex metric spaces

Exercise 34 ([11, s. 394, Remark after Definition 2.3]). Let (X, d) be a metric space.
Prove that the following conditions are equivalent:

(a) the space X is totally convex;

(b) if d(x, y) = r + s, then the closed balls B(x, r) i B(y, s) intersect;

(c) if d(x, y) ≤ r + s, then the closed balls B(x, r) i B(y, s) intersect.

Exercise 35 ([2, p. 407, Remark 1]). Prove that if T : X → Y is a uniformly continous
mapping from a totally convex space X to the metric space Y , then its minimal modulus
of continuity is subadditive.

Exercise 36 ([5, s. 20, Lemma 3.1.14]). Let X, Y be metric, A ⊂ X and B ⊂ Y be
nonempty sets and T : X → B be a mapping of modulus of continuity ω. Prove that there
exists a maximal extension T̃ of the mapping T having the same modulus of continuity
and and mapping and mapping every point outside the domain of the mapping T into the
set B.

Exercise 37 ([5, s. 31, Proposition 4.2.5]). Prove that if A is a subset of a totally convex
space X, x ∈ X \ A and a ∈ A is such that d(x, a) = d(x,A), then a belongs to the
boundary of the set A.

Exercise 38 ([5, s. 30, Example 4.1.1]). Prove that every closed interval included in the
real line is hyperconvex.

Exercise 39. Prove that the space Rn endowed with the Euclidean metric is hyperconvex
if and only if n = 1.

Exercise 40 ([5, s. 17]). Prove that if a metric space is hyperconvex, then it possesses
the property (P ), but not necessary conversely.

Exercise 41 ([16, s. 66, Remark 1.2]). Prove that the hyperconvexity of the space X
is equivalent to the following property: for any function r : X → [0,+∞) satisfying the
inequality d(x, y) ≤ r(x) + r(y) for any x, y ∈ X, there exists such a point z ∈ X that
d(x, z) ≤ r(x) for every x ∈ X.
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Exercise 42 ([5, s. 30, Proposition 4.1.2]). Prove that every hyperconvex space is complete.

Exercise 43. Prove that every bounded subset A of a hyperconvex space is included in a
certain ball of radius 1

2
diamA.

Exercise 44 ([5, s. 34, Example 4.3.1]). Check that the intersection of two hyperconvex
spaces does not have to be hyperconvex.

Exercise 45 ([5, s. 26, Theorem 3.2.5]). Prove that a nonexpansive retract of a hyperconvex
space is hyperconvex.

Exercise 46 ([5, s. 26, Example 3.2.6]). Prove that the image of a hyperconvex space
under a nonexpansive mapping does does not have to be hyperconvex.

Exercise 47 ([5, s. 39, Remark 4.3.9]). Give a chain of hyperconvex spaces which has an
empty intersection.

Exercise 48 ([5, s. 41, Theorem 4.4.1]). Prove that the product of two hyperconvex spaces
endowed with the maximum metric is hyperconvex.

Exercise 49 ([5, s. 50, Theorem 4.5.8]). Give an example of a linear subspace of the space
R3 endowed with the ,,maximum” norm, which is not hyperconvex.

Exercise 50 ([5, s. 55, Example 4.6.4]). Prove that a metric segment is a hyperconvex
hull of two point space.

Exercise 51 ([9, s. 334, 1.16]). Construct a hyperconvex hull of three point space.

Exercise 52 ([5, p. 63, Example 4.6.21]). Prove that the hyperconvex hull of c0 in l∞ is
the whole space l∞.

Exercise 53 ([5, s. 76, Corollary 5.2.3]). Prove that any continuous mapping of a hyper-
convex space into itself possesses a fixed point.

Exercise 54 ([11, s. 397, Remark after Definition 3.4]). Prove that a nonempty intersection
of admissible sets is admissible.

Exercise 55 ([11, s. 398, Theorem 3.10]). Prove that an admissible subset of a hyperconvex
space H is hyperconvex.

Exercise 56 ([5, s. 41, Proposition 4.2.6]). Prove that if A is an admissible subset of a
hyperconvex space H, then every point of the space H possesses the nearest point in A.

Exercise 57 ([5, s. 43, Proposition 4.2.10]). Let H be a hyperconvex space, A =⋂
λ∈ΛB(xλ, rλ) be an admissible set and let r > 0. Prove that

⋃
x∈AB(x, r) =

⋂
λ∈ΛB(xλ, rλ+

r).

Exercise 58 ([5, s. 36, Lemma 4.3.7]). Prove that the intersection of a chain of admissible
subsets of a hyperconvex space is nonempty.
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Functions of bounded variation

Exercise 59 ([1, Proposition 1.3(d), p. 56]). Prove that if f : [a, b] → R is a function
of bounded variation in the sense Jordan, then it is bounded and that ‖f‖∞ ≤ |f(a)|+
var(f ; [a, b]).

Exercise 60 ([1, Proposition 1.3(a), p. 56]). Prove that if f, g : [a, b]→ R are functions
of bounded variation in the sense of Jordan, then also f + g is a function of bounded
variation in the sense of Jordan and that the following inequality holds var(f + g; [a, b]) ≤
var(f ; [a, b]) + var(g; [a, b]).

Exercise 61 ([1, Proposition 1.3(e), p. 56]). Prove that every monotone function
f : [a, b]→ R is of bounded variation in the sense of Jordan and var(f ; [a, b]) = |f(b)−f(a)|.

Exercise 62 ([1, Proposition 1.10, p. 62]). Prove that if f, g : [a, b]→ R are functions of
bounded variation in the sense of Jordan, then

var(fg; [a, b]) ≤ ‖f‖∞ var(g; [a, b]) + ‖g‖∞ var(f ; [a, b]).

Exercise 63 ([1, Proposition 1.3(g), p. 56]). Prove that the variation in the sense of
Jordan is an additive function of an interval, that is the following equality holds

var(f ; [a, b]) = var(f ; [a, c]) + var(f ; [c, b]), c ∈ [a, b],

where f : [a, b] 7→ R is a function of bounded variation in the sense of Jordan.

Exercise 64 ([1, Exercise 1.1, p. 104]). Prove that if functions f, g : [a, b] → R are
functions of bounded variation in the sense of Jordan and m := infx∈[a,b]|g(x)| > 0, then
the quotient f/g is also a function of bounded variation in the sense of Jordan.

Exercise 65 ([12, p. 60]). Prove that if a function f : [a, b] → R satisfies the Lipschitz
condition 1, then it is of bounded variation in the sense of Jordan and that var(f ; [a, b]) ≤
L(b− a). Does any function of bounded variation in the sense of Jordan have to satisfy a
Lipschitz condition?

1Let us recall that a function f : [a, b] → R satisfies the Lipschitz condition, if there exists such a
constant L ≥ 0 that |f(x)− f(y)| ≤ L|t− s| for any x, y ∈ [a, b]. Let us notice that functions satisfying
the Lipschitz condition are uniformly continuous.
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Exercise 66 ([1, Exercise 1.3, p. 104]). Prove that if f : [a, b] → R is a function of
bounded variation in the sense of Jordan, then also |f | is a function of bounded variation
in the sense of Jordan and that the following inequality holds

var(|f |; [a, b]) ≤ var(f ; [a, b]).

Exercise 67 ([1, Exercise 1.4, p. 104]). Show an example of such a function f : [0, 1]→ R
of unbounded variation in the sense of Jordan that |f | is a function ofbounded variation
in the sense of Jordan.

Exercise 68 ([1, Example 1.4, p. 58]). Show an example of a function of bounded
variation in the sense of Jordan, which is not monotone on every interval.

Exercise 69 ([14, Exercise 2.3, p. 41]). Prove that if f : [a, b] → R is a function of
C1–class, then

var(f ; [a, b]) =

∫ b

a

|f ′(t)|dt. (69.1)

Exercise 70 ([12, p. 61]). Let g : [a, b] → R be a continuous function and let c ∈ R.
Evaluate the variation in the sense of Jordan of the function f : [a, b]→ R given by the
formula

f(x) = c+

∫ x

a

g(t)dt.

Exercise 71. Let us consider the function f : [0, 1]→ R given by the formula

f(x) =

{
0, if x = 0,

x3 sin 1
x
, if x ∈ (0, 1].

Show that 2
3
≤ var(f ; [0, 1]) ≤ 3

2
.

Exercise 72 ([1, Example 1.8]). Show that the function f : [0, 1]→ R given by the formula

f(x) =

{
x sin 1

x
for x ∈ (0, 1],

0 for x = 0,

is continuous, but f /∈ BV [0, 1].

Exercise 73 ([1, Exercise 1.15]). For a given function f : [a, b]→ R let vf (x) = var(f ; [a, x])
for x ∈ [a, b]. Find the formula for the function vf , if f(x) = sin x and [a, b] = [0, 2π].

Exercise 74 ([6, Example 4]). Give an example of a function satisfying the Hölder
condition2 with the power 1

2
, which is not a function of bounded variation in the sense

Jordan. Do there exist functions satisfying the Hölder condition with the power α ∈ [0, 1],
which are not of bounded variation in the sense of Jordan, but they are not constant
functions?

2Let us recall that a function f : [a, b]→ R satisfies the Hölder condition with the power α ∈ [0, 1], if
there exists such a constant L > 0 that |f(x)− f(y)| ≤ L|x− y|α for x, y ∈ [a, b].
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Almost periodic functions

Exercise 75 ([3, Zadanie 85, p. 42]). Prove that if there exists such a number a 6= 0 that

f(x+ a) =
1 + f(x)

1− f(x)
for x ∈ R, (75.1)

where f : R→ R \ {1}, then f is a periodic function.

Exercise 76 (cf. [3, Zadanie 35, p. 111] or [4, Exercise 5.16]). Prove that the unique
nontrivial 1 solution to the following functional equation

f(x+ y) + f(y − x) = 2f(x)f(y), x, y ∈ R, (76.1)

in the class of bounded and twice continuously differential functions on R is f(x) = cos ax,
where a is a given nonzero real number.

Exercise 77. Let f : R→ R be a periodic function. Prove that if f is differentiable, then
the derivative f ′ is a periodic function. Is a primitive function of a continuous function a
periodic one?

Exercise 78 ([3, Zadanie 259, p. 124] or [12, p. 119]). Let f : R → R be a continuous
function (locally integrable) and periodic of the period ω > 0. Show that for an arbitrary
a ∈ R and n ∈ N the following formula holds∫ a+nω

a

f(s)ds = n

∫ ω

0

f(s)ds.

Exercise 79 ([18, Remark, p. 88]). Let f : R→ R be a continuous periodic function of a
period ω > 0. Prove that

M(f) =
1

ω

∫ ω

0

f(s)ds.

Exercise 80. Show that a relatively dense set can be defined in an equivalent way using
closed intervals as well as open intervals.

Exercise 81 ([17, p. 23] or [18, Example, p. 20]). Examine, which of the following subsets
of the set of real numbers is relatively dense:

1Let us recall that a solution is said to be nontrivial if it is different from a constant function.
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(a) A = {±k2 : k ∈ N0}; (b) B = {±k 1
2 : k ∈ N0}.

Exercise 82 (cf. [17, Przyk lad 1.1]). Show that the function f : R → R given by the
formula f(x) = cosαx + cos βx, where α, β ∈ R \ {0} are incommensurate, is almost
periodic, but it is not periodic.

Exercise 83 (cf. [18, Proposition 3, p. 26]). Let f : R→ R be an almost periodic function.
Prove that for arbitrary a ∈ R it holds ‖f‖∞ = supx≥a|f(x)|. Deduce that if an almost
periodic function converges to zero as x→ +∞, that is limx→+∞ f(x) = 0, then f ≡ 0.



Chapter 6

Appendix

Exercise 84 ([10, p. 14, 1.4.1, and p. 15, 1.4.2]). (a) Prove that any nondecreasing map
f : [0, 1]→ [0, 1] has a maximal fixed point.

(b) Show that if we additionally assume the leftside continuity, then there exists a minimal
fixed point z0 and z0 = limn→∞ f

n(0).

Exercise 85 ([10, p. 19, 1.6.26]). Let 〈P,�〉 be a partially ordered set and F a nonempty
commutative family of isotone mappings of P into itself. Assume that there exists a b ∈ P
such that b � f(b) for each f ∈ F and that every chain in {x ∈ P : b � x} has a supremum.
Show that F has a maximal common fixed point

Exercise 86 ([10, p. 19, 1.6.19]). Let X, Y be two nonempty sets and f : X → Y ,
g : Y → X two maps. Show that X and Y can be written as disjoint unions, X = X1∪X2,
Y = Y1 ∪ Y2, where f(X1) = Y1 and g(Y2) = X2. Derive the Cantor–Bernstein theorem.

Exercise 87 ([10, p. 169 and p. 34, 2.7.7]). Let A be a closed subset of a metric space X.
Use the Knaster–Tarski theorem to show that A includes a maximal perfect subset.

Exercise 88 ([10, p. 34, 2.7.7]). Let C be a convex subset of a Hilbert space H and let
f : C → C be nonexpansive. Show that the fixed point set of f is convex (possibly empty).

Exercise 89 ([10, p. 24, 2.1.6]). Let f : B → H be a nonexpansive mapping of a closed
ball in a Hilbert space H into that space. Show that if (x|f(x)) ≤ ‖x‖2 for every x ∈ ∂B,
then f has a fixed point.

Exercise 90. Give an example of an incomplete inner product space X and a nonexpansive
mapping f : B → B, where B is the closed unit ball in X, such that f has no fixed points.
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